Gene therapy for inborn errors of metabolism of the liver

Sharon Cunningham

Gene Therapy Research Unit
Children’s Medical Research Institute and
The Children’s Hospital at Westmead
Sydney, Australia
Gene Therapy Research Unit (GTRU)

Children’s Medical Research Institute

The Children’s Hospital at Westmead

Head of Unit: Prof Ian Alexander

(Senior Staff Specialist, Metabolic Disorders Services)

The laboratory bench

Basic and pre-clinical studies

The patient bedside

Clinical trials
Interests of the GTRU

Liver → Metabolic disorders
(Urea cycle disorders)

Haematopoetic Stem Cells (HSCs)

→ Immune diseases
(SCID-X1)

→ Cancer
(myeloprotection with MGMT)
(Clinical trials)
Inborn errors of metabolism

- **Significant cause of childhood disability and death:** Individually rare, collectively common (~1 in every 500 newborns).

- **Many tissues and organs are affected including:**
 Liver, skeletal/cardiac muscle, central nervous system, hematopoietic compartment, among others.
Metabolic processes in the liver

- Highly complex organ, carries out many vital functions:

<table>
<thead>
<tr>
<th>Intermediary metabolism</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(carbohydrate, lipid, protein)</td>
<td>(glycogen, vitamins, iron, copper)</td>
</tr>
<tr>
<td>UCDs, PKU, Tyrosinaemia Type 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detoxification</th>
<th>Biosynthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xenobiotics, metabolic endproducts)</td>
<td>(plasma proteins, bile acids)</td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
</tr>
</tbody>
</table>

High incidence of disease-causing mutations (~1 in 800 births).

⇒ Liver is an attractive target for developing new therapies.
Urea Cycle Disorders

- A paradigm for inborn errors of liver cell (hepatocyte) metabolism.
- Ammonia detoxification by nitrogen removal (byproduct of protein metabolism).

- Elevated plasma ammonia (hyperammonaemia) → highly neurotoxic.
- Orotic aciduria, amino acid abnormalities (incl. citrulline, arginine, glutamine).

- 5 primary enzymes
- 1 co-factor producer
- 2 transport proteins
Management of severe early-onset UCDs is highly challenging

• **Severe neonatal presentation:**
 Hyperammonaemia, encephalopathy, respiratory alkalosis, coma, death if untreated.

• **Haemofiltration.**

• **Ongoing management (pharm/dietary):**
 • Alternative pathway therapy to remove nitrogen (sodium benzoate/sodium phenylacetate)
 • Arginine/citrulline supplementation.
 • Rigorous protein restriction.

• **Liver transplant for long-term survival:**
 • Waiting lists.
 • Metabolic crisis difficult to control.
 • Life-long immunosuppressive therapy.

➢ **Gene therapy - an attractive alternative!**
What is gene therapy?

“The insertion of genetic material into cells to correct a genetic defect by replacing, altering or supplementing a gene that is absent or abnormal”

Genes as medicine!
Gene delivery systems

Non-viral
- Naked DNA
- DNA-chemical complexes

Viral
- Adenovirus
- Adeno-associated virus (AAV) (Non-integrating vectors)
- Retrovirus
- Lentivirus (Integrating vectors)

(travel via the bloodstream)

Target cell
- cytoplasm
- nucleus

“taxi”
Adeno-associated viral vectors (rAAV)

- Targets liver very efficiently.
- Non-pathogenic parvovirus.
- Single-stranded DNA genome surrounded by a protein “coat” (capsid):

 Virus

 ![Virus Diagram]

 - Virus is “gutted” – viral genes removed.

 Vector

 ![Vector Diagram]

 - “coat variations” pseudoserosertype with different capsids depending on cell types/target species
Tools for testing a new vector

Promoter ("on switch")

GFP (reporter gene)

GFP “green fluorescent protein” (from jellyfish)

Cells “in vitro”

rAAV-LSP.GFP

Animal models “in vivo”
The journey to the clinic...

- Cell culture
- Small animal models
- Large animal models
- Children
- Adults
OTC deficiency

• Most common UCD; X-linked recessive (males more severe)

Spf^{ash} mouse model of OTC deficiency

• Sparse fur, abnormal skin and hair (amino acid abnormalities; normal by adulthood)

• Mild metabolic phenotype:
 – Affected males 3-5% normal OTC activity.
 – Not hyperammonemnic.
 – Elevated urinary orotic acid (surrogate marker).

➢ We have successfully cured adult mice using gene therapy!
Curing OTC deficiency in the adult mouse

- Adult mice (8-10 weeks)
- 3 doses (low, mid, high)
- Injected intraperitoneally

Analysis at 2 weeks post-injection:
- Orotic acid (urine)
- OTC enzyme activity (liver)
Curing OTC deficiency in the adult mouse

OTC enzyme activity

![Graph showing OTC enzyme activity with different dose levels for wildtype (normal) and Spfash (treated) groups.]

Urinary orotic acid

![Graph showing urinary orotic acid levels with different dose levels for wildtype (normal) and Spfash (treated) groups.]

Liver sections

![Liver sections images showing wildtype (normal) and Spfash (treated) conditions.]
Liver-targeted AAV gene therapy for Hemophilia B

Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B

ABSTRACT

November 29, 2014
Our challenges are far greater...

Hemophilia B
- “low hanging fruit”.
- Made in the cell, but secreted to bloodstream.
- Only need to “supercharge“ a few cells.

Urea cycle disorders
- “cell autonomous” (made and functions within the same cell)
- Minimum threshold of cells need to be fixed AND maintained (challenge in the growing liver with our system)
Maintaining stable gene correction in a growing liver

AAV efficiently targets liver cells but does not integrate into target cell DNA:

- **Stable** in quiescent cells (adult liver).
- Lost from rapidly dividing cells (neonatal liver).

Cunningham et al. Mol Ther (2008)

Mouse liver sections showing eGFP-expressing cells

1 wk | 3 wk | 6 wk | 6 mth | 12 mth

Neonate: ~100% efficiency

only ~5% cells remain stably gene-modified

Cunningham et al. Mol Ther (2008)
The minimum threshold for correction can be achieved in the growing liver by vector re-delivery

- Cindy Kok (PhD student)
- Mouse model of Citrullinaemia (ASS deficiency – another UCD)
- Neonatal lethal - mice die within 24 hours with elevated blood ammonia.
The minimum threshold for correction can be achieved in the growing liver by vector redelivery.

Survival

- 2 doses – sick within 2-4 wks
- 3 and 4 doses – did not get sick

Liver section

- 15% wt ASS activity
- 25% gene-modified cells
Our trajectory to the clinic

• Collaboration with metabolic team at Greater Ormond Street Hospital for Children (University College London).
• Pre-clinical studies in non-human primates.
• “Bridge-to-transplant” clinical trial in paediatric patients.
Future technologies

Mutated gene

Gene addition

Gene repair (editing)

CRISPR/Cas9 (molecular scissors that “cut and fix” DNA)
A mouse model with “humanised” mouse liver

FRG mouse (Tyrosinaemia Type 1):

- Human hepatocytes can be engrafted and selectively expanded – “humanised mouse liver”
- Immunodeficient (no rejection of human cells)
- Fah-negative (expand “normal” cells)

Building a repository of human hepatocytes with metabolic deficiencies:

OTC, CPS1, ASL
Mouse liver engrafted with OTC-deficient human liver cells

OTC-deficient human hepatocytes engrafted in an FRG mouse (human albumin staining).

Red cells = human cells

Adjacent section stained for in situ OTC activity (brown).

Intensity of brown stain = level of OTC activity
AAV vector development in the humanised mouse model

⇒ AAV-LK03 is our vector of choice for our OTC clinical trial in paediatric patients.
Exciting times ahead for liver-targeted gene therapy...

• AAV in adult liver is already showing great success in the clinic.

• An OTC clinical trial in paediatric patients with a human-specific AAV is looking highly likely.

• Further development of the “gene editing” platform will benefit gene therapy in the paediatric liver.

• These tools can be transferred to other conditions such as PKU and Tyrosinaemia.
Acknowledgements

Gene Therapy Research Unit
Prof Ian Alexander (Unit Head)
Sydney Children’s Hospitals Network and
Children’s Medical Research Institute
Westmead, Sydney, Australia

International Collaborators
Mark Kay
Markus Grompe
David Russell
Rob Kotin
Paul Gissen
Adrian Thrasher
Stanford University
OSHU
University of Washington
NIH
UCL / GOSH
UCL / GOSH